Existence of Non-oscillatory Solutions for a Higher-order Nonlinear Neutral Difference Equation

نویسندگان

  • ZHENYU GUO
  • MIN LIU
چکیده

This article concerns the solvability of the higher-order nonlinear neutral delay difference equation ∆ “ akn . . .∆ ` a2n∆(a1n∆(xn + bnxn−d)) ́” + s X j=1 pjnfj(xn−rjn ) = qn, where n ≥ n0 ≥ 0, d, k, j, s are positive integers, fj : R → R and xfj(x) ≥ 0 for x 6= 0. Sufficient conditions for the existence of non-oscillatory solutions are established by using Krasnoselskii fixed point theorem. Five theorems are stated according to the range of the sequence {bn}.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear oscillation of certain third-order neutral differential equation with distributed delay

The authors obtain necessary and sufficient conditions for the existence of oscillatory solutions with a specified asymptotic behavior of solutions to a nonlinear neutral differential equation with distributed delay of third order. We give new theorems which ensure that every solution to be either oscillatory or converges to zero asymptotically. Examples dwelling upon the importance of applicab...

متن کامل

Uncountably many bounded positive solutions for a second order nonlinear neutral delay partial difference equation

In this paper we consider the second order nonlinear neutral delay partial difference equation $Delta_nDelta_mbig(x_{m,n}+a_{m,n}x_{m-k,n-l}big)+ fbig(m,n,x_{m-tau,n-sigma}big)=b_{m,n}, mgeq m_{0},, ngeq n_{0}.$Under suitable conditions, by making use of the Banach fixed point theorem, we show the existence of uncountably many bounded positive solutions for the above partial difference equation...

متن کامل

Existence of Non-oscillatory Solutions to Higher-order Mixed Difference Equations

In this paper, we consider the higher order neutral nonlinear difference equation ∆(x(n) + p(n)x(τ(n))) + f1(n, x(σ1(n)))− f2(n, x(σ2(n))) = 0, ∆(x(n) + p(n)x(τ(n))) + f1(n, x(σ1(n)))− f2(n, x(σ2(n))) = g(n), ∆(x(n) + p(n)x(τ(n))) + l X i=1 bi(n)x(σi(n)) = 0. We obtain sufficient conditions for the existence of non-oscillatory solutions.

متن کامل

Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation

In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...

متن کامل

Existence of Solutions to N-th Order Neutral Dynamic Equations on Time Scales

In this article, we study n-th order neutral nonlinear dynamic equation on time scales. We obtain sufficient conditions for the existence of non-oscillatory solutions by using fixed point theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010